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Agenda

1. Problem statement and research question

2. Analysis along procedure model for regression 

Å Data overview

Å Data analysis 

Å Results

3. Lessons learned
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Problem statement of potential buyers:

Does this e-car fit to me?

Å Potential buyers of electric vehicles face a high level of uncertainty:

ü Can be quantified as 

ñHow much of my goals (in percentage) can I reach?ò

Å This workôs goal: 

Based on existing driving data, predict the percentage of reached goals for 

a new person.

ü Machine learning, predictive analytics



p. 4Mathias Renner | Hands-On Seminar, Predicting Usability of E-cars 

Use case: Tesla
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Use case: Tesla
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The classical approach to evaluate usability

230 km+ =

Source of image on the left: 

www.elektroauto-news.net
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The classical approach has drawbacks.

Å Result?          Max. range Reached goals in percentage

Å Practical? Limited due to idealistic Very precise, can be very practical

test conditions and

generalized data

Å Data needs? Data only once per car New data for each car and driver

Classic Approach vs. ĂNewñ Approach
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Procedure model: 

Predictive data analysis aka. supervised machine

learning with regression models

Source: Adapted from lecture ĂBusiness 

Intelligence and Analyticsñ, Sodenkamp 2015



p. 9Mathias Renner | Hands-On Seminar, Predicting Usability of E-cars 

Data overview

Car ID (1-50) Long./Lat. Highway/Urban Level of battery
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25 features have been extracted.

Distance on

Highways

Parking time 

per trip

Avg. speed

per trip

Driving time

on weekends
é
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Linear regression model is not applicable.

Linear regression model Logit regression model
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Results: One of univariate models
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Results: Final Model

glm( formula = REACHED_GOALS_SOCBOTH ~ SPEED_AVG_KMH + ¤ )

Estimate Std. Error t value Pr(>|t|)    

( Intercept )                     5.496e+00  6.778e - 01   8.108 2.33e - 09 ***

SPEED_AVG_KMH                  - 9.935e- 02  1.557e - 02  - 6.381 3.16e - 07 ***

DISTANCE_HIGHWAY_KM            - 6.441e- 05  2.257e - 05  - 2.854  0.00741 ** 

ROUND_TRIP_DISTANCE_AVG_KM      8.750e- 03  3.466e - 03   2.525  0.01656 *  

ROUND_TRIP_PARKING_TIME_AVG_H  - 5.590e- 02  1.740e - 02  - 3.212  0.00294 ** 

SINGLE_TRIP_PARKING_TIME_AVG_H  2.871e- 01  9.314e - 02   3.082  0.00413 ** 

ROUND_NUMBER_TRIPS_AFTERNOON    2.480e- 04  1.070e - 04   2.319  0.02676 * 

Pseudo R2: 0.75

Limitation: Correlations! 
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Results: Predicting with model 2
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Results: Predicting with model 2

Car #

5-fold Cross 

Validation 

Accuracy:

Ø 89,9 %
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Lessons learned

Å R has superpowers. Itósonly up to the user to leverage it.

Å Lecture Data Analytics in Energy Informatics has been very helpful to

actually understand

Å Lecture Business Intelligence and Analytics has been helpful for general

procedures for data analytics

Å Performance of R is highly dependent of efficient algorithm description
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Thank you very much for your attention.

Source: Adapted from http://fontawesome.io/
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Backup-Slides
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Distribution of dependent variable
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General procedure model:CRISP-DM
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The classical approach has drawbacks.

Å Result?          Max. range Reached goals in percentage

Å Significant? Limited due to Siginifcant for each driverós

generalized data behavior

Å Practical? Limited due to idealistic Can be very practical

test conditions

Å Data needs? Test data only once New data for each car and driver

Classic Approach vs. ĂNewñ Approach


